Novos alvos terapêuticos para o transtorno afetivo bipolar

Autores

  • André F. Carvalho Psiquiatra; Professor Adjunto, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Coordenador Grupo de Pesquisas em Psiquiatria. https://orcid.org/0000-0001-5593-2778

DOI:

https://doi.org/10.25118/2763-9037.2014.v4.247

Palavras-chave:

transtorno bipolar, pesquisa médica translacional, plasticidade neuronal

Resumo

O transtorno bipolar (TB) é crônico e incapacitante, sendo clinicamente caracterizado por episódios recorrentes de mania (ou hipomania) e depressão, além de estados mistos. O TB está associado a um aumento do risco de suicídio e a uma elevada prevalência de co-morbidades médicas e psiquiátricas, além de morte prematura e disfunção cognitiva. Os tratamentos disponíveis para o TB são insuficientes para uma proporção significativa de pacientes. Diversos novos alvos terapêuticos vêm sendo explorados para o desenvolvimento de novos fármacos com propriedades estabilizadoras do humor, incluindo: (1) a via da glicogênio sintase quinase 3 (GSK-3); (2) o via do fosfatidil-inositol e da proteína quinase C; (3) o fator de crescimento derivado do cérebro (BDNF); (4) as histonas deacetilases; (5) o sistema melatoninérgico; (6) fármacos anti-oxidantes e moduladores da função mitocondrial, além de (7) fármacos anti-inflamatórios. O presente artigo revisa o estado atual do conhecimento, além das dificuldades para o desenvolvimento de novos fármacos para o TB dentro de uma perspectiva translacional. O desenvolvimento de estratégias integrativas que analisem dados dimensionais de alta precisão, mesclando dados “ômicos” através de técnicas de bioinformática são necessárias para uma melhor elucidação da fisiopatologia complexa do TB. Tais achados podem levar ao desenvolvimento de novos fármacos para o TB, além de um tratamento personalizado.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of general psychiatry. 2011;68:241-51. https://doi.org/10.1001/archgenpsychiatry.2011.12 DOI: https://doi.org/10.1001/archgenpsychiatry.2011.12

Belmaker RH. Bipolar disorder. The New England journal of medicine. 2004;351:476-86. https://doi.org/10.1056/NEJMra035354 DOI: https://doi.org/10.1056/NEJMra035354

Phillips ML, Kupfer DJ. Bipolar disorder diagnosis: challenges and future directions. Lancet. 2013;381:1663-71. https://doi.org/10.1016/S0140-6736(13)60989-7 DOI: https://doi.org/10.1016/S0140-6736(13)60989-7

Gonda X, Pompili M, Serafini G, Montebovi F, Campi S, Dome P, et al. Suicidal behavior in bipolar disorder: epidemiology, characteristics and major risk factors. Journal of affective disorders. 2012;143:16-26. https://doi.org/10.1016/j.jad.2012.04.041 DOI: https://doi.org/10.1016/j.jad.2012.04.041

Krishnan KR. Psychiatric and medical comorbidities of bipolar disorder. Psychosomatic medicine. 2005;67:1-8. https://doi.org/10.1097/01.psy.0000151489.36347.18 DOI: https://doi.org/10.1097/01.psy.0000151489.36347.18

Crump C, Sundquist K, Winkleby MA, Sundquist J. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA psychiatry. 2013;70:931-9. https://doi.org/10.1001/jamapsychiatry.2013.1394 DOI: https://doi.org/10.1001/jamapsychiatry.2013.1394

Andreou C, Bozikas VP. The predictive significance of neurocognitive factors for functional outcome in bipolar disorder. Current opinion in psychiatry. 2013;26:54-9. https://doi.org/10.1097/YCO.0b013e32835a2acf DOI: https://doi.org/10.1097/YCO.0b013e32835a2acf

Bourne C, Aydemir O, Balanza-Martinez V, Bora E, Brissos S, Cavanagh JT, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta psychiatrica Scandinavica. 2013;128:149-62. https://doi.org/10.1111/acps.12133 DOI: https://doi.org/10.1111/acps.12133

Ketter TA. Nosology, diagnostic challenges, and unmet needs in managing bipolar disorder. The Journal of clinicalpsychiatry. 2010;71:e27. https://doi.org/10.4088/JCP.8125tx12c DOI: https://doi.org/10.4088/JCP.8125tx12c

Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Jr., et al. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta psychiatrica Scandinavica. 2012;126:332-41. https://doi.org/10.1111/j.1600-0447.2012.01889.x DOI: https://doi.org/10.1111/j.1600-0447.2012.01889.x

Kulkarni J, Filia S, Berk L, Filia K, Dodd S, de Castella A, et al. Treatment and outcomes of an Australian cohort of outpatients with bipolar I or schizoaffective disorder over twentyfour months: implications for clinical practice. BMC psychiatry. 2012;12:228. https://doi.org/10.1186/1471-244X-12-228 DOI: https://doi.org/10.1186/1471-244X-12-228

Insel TR, Sahakian BJ. Drug research: a plan for mental illness. Nature. 2012;483:269. https://doi.org/10.1038/483269a DOI: https://doi.org/10.1038/483269a

Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science (New York, NY). 2008;322:1839-42. https://doi.org/10.1126/science.1165409 DOI: https://doi.org/10.1126/science.1165409

Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC medicine. 2013;11:126. https://doi.org/10.1186/1741-7015-11-126 DOI: https://doi.org/10.1186/1741-7015-11-126

Butler D. Translational research: crossing the valley of death. Nature. 2008;453:840-2. https://doi.org/10.1038/453840a DOI: https://doi.org/10.1038/453840a

Machado-Vieira R. Tracking the impact of translational research in psychiatry: state of the art and perspectives. Journal of translational medicine. 2012;10:175. https://doi.org/10.1186/1479-5876-10-175 DOI: https://doi.org/10.1186/1479-5876-10-175

Weissman MM, Brown AS, Talati A. Translational epidemiology in psychiatry: linking population to clinical and basic sciences. Archives of general psychiatry. 2011;68:600-8. https://doi.org/10.1001/archgenpsychiatry.2011.47 DOI: https://doi.org/10.1001/archgenpsychiatry.2011.47

Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nature neuroscience. 2010;13:1161-9. https://doi.org/10.1038/nn.2647 DOI: https://doi.org/10.1038/nn.2647

Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. Journal of psychiatry & neuroscience : JPN. 2006;31:326-32. https://doi.org/10.1007/s11064-006-9070-6 DOI: https://doi.org/10.1007/s11064-006-9070-6

Macedo DS, de Lucena DF, Queiroz AI, Cordeiro RC, Araujo MM, Sousa FC, et al. Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: relevance as an animal model of mania. Progress in neuro-psychopharmacology & biological psychiatry. 2013;43:230-7. https://doi.org/10.1016/j.pnpbp.2013.01.007 DOI: https://doi.org/10.1016/j.pnpbp.2013.01.007

Post RM, Jimerson DC, Bunney WE, Jr., Goodwin FK. Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology. 1980;67:297-305. https://doi.org/10.1007/BF00431272 DOI: https://doi.org/10.1007/BF00431272

El-Mallakh RS, El-Masri MA, Huff MO, Li XP, Decker S, Levy RS. Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord. 2003;5:362-5. https://doi.org/10.1034/j.1399-5618.2003.00053.x DOI: https://doi.org/10.1034/j.1399-5618.2003.00053.x

Herman L, Hougland T, El-Mallakh RS. Mimicking human bipolar ion dysregulation models mania in rats. Neurosci Biobehav Rev. 2007;31:874-81. https://doi.org/10.1016/j.neubiorev.2007.04.001 DOI: https://doi.org/10.1016/j.neubiorev.2007.04.001

Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2006;26:9022-9. https://doi.org/10.1523/JNEUROSCI.5216-05.2006 DOI: https://doi.org/10.1523/JNEUROSCI.5216-05.2006

van Enkhuizen J, Minassian A, Young JW. Further evidence for ClockDelta19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behavioural brain research. 2013;249:44-54. https://doi.org/10.1016/j.bbr.2013.04.023 DOI: https://doi.org/10.1016/j.bbr.2013.04.023

Kirshenbaum GS, Clapcote SJ, Duffy S, Burgess CR, Petersen J, Jarowek KJ, et al. Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase alpha3 sodium pump. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:18144-9. https://doi.org/10.1073/pnas.1108416108 DOI: https://doi.org/10.1073/pnas.1108416108

Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35:804-17. https://doi.org/10.1016/j.neubiorev.2010.10.001 DOI: https://doi.org/10.1016/j.neubiorev.2010.10.001

Swann AC, Bowden CL, Calabrese JR, Dilsaver SC, Morris DD. Differential effect of number of previous episodes of affective disorder on response to lithium or divalproex in acute mania. The American journal of psychiatry. 1999;156:1264-6.

Berk M, Brnabic A, Dodd S, Kelin K, Tohen M, Malhi GS, et al. Does stage of illness impact treatment response in bipolar disorder? Empirical treatment data and their implication for the staging model and early intervention. Bipolar Disord. 2011;13:87-98. https://doi.org/10.1111/j.1399-5618.2011.00889.x DOI: https://doi.org/10.1111/j.1399-5618.2011.00889.x

Lim CS, Baldessarini RJ, Vieta E, Yucel M, Bora E, Sim K. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neurosci Biobehav Rev. 2013;37:418-35. https://doi.org/10.1016/j.neubiorev.2013.01.003 DOI: https://doi.org/10.1016/j.neubiorev.2013.01.003

Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Putative neuroprotective agents in neuropsychiatric disorders. Progress in neuro-psychopharmacology & biological psychiatry. 2013;42:135-45. https://doi.org/10.1016/j.pnpbp.2012.11.007 DOI: https://doi.org/10.1016/j.pnpbp.2012.11.007

Hallahan B, Newell J, Soares JC, Brambilla P, Strakowski SM, Fleck DE, et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis ofindividual adult patient data. Biological psychiatry. 2011;69:326-35. https://doi.org/10.1016/j.biopsych.2010.08.029 DOI: https://doi.org/10.1016/j.biopsych.2010.08.029

Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. The British journal of psychiatry : the journal of mental science. 2011;198:351-6. https://doi.org/10.1192/bjp.bp.110.080044 DOI: https://doi.org/10.1192/bjp.bp.110.080044

Quiroz JA, Machado-Vieira R, Zarate CA, Jr., Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. neuropsychobiology. 2010;62:50-60. https://doi.org/10.1159/000314310 DOI: https://doi.org/10.1159/000314310

Leng Y, Fessler EB, Chuang DM. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 2013;16:607-20. https://doi.org/10.1017/S1461145712000429 DOI: https://doi.org/10.1017/S1461145712000429

Park SW, Phuong VT, Lee CH, Lee JG, Seo MK, Cho HY, et al. Effects of antipsychotic drugs on BDNF, GSK-3beta, and beta-catenin expression in rats subjected to immobilization stress. Neuroscience research. 2011;71:335-40. https://doi.org/10.1016/j.neures.2011.08.010 DOI: https://doi.org/10.1016/j.neures.2011.08.010

Dean OM, Data-Franco J, Giorlando F, Berk M. Minocycline: therapeutic potential in psychiatry. CNS drugs. 2012;26:391-401. https://doi.org/10.2165/11632000-000000000-00000 DOI: https://doi.org/10.2165/11632000-000000000-00000

Rong W, Wang J, Liu X, Jiang L, Wei F, Zhou H, et al. 17beta-estradiol attenuates neural cell apoptosis through inhibition of JNK phosphorylation in SCI rats and excitotoxicity induced by glutamate in vitro. The International journal of neuroscience. 2012;122:381-7. https://doi.org/10.3109/00207454.2012.668726 DOI: https://doi.org/10.3109/00207454.2012.668726

Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends in pharmacological sciences. 2013;34:167-77. https://doi.org/10.1016/j.tips.2013.01.001 DOI: https://doi.org/10.1016/j.tips.2013.01.001

Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biological psychiatry. 2013;74:15-25. https://doi.org/10.1016/j.biopsych.2013.01.007 DOI: https://doi.org/10.1016/j.biopsych.2013.01.007

Grande I, Magalhaes PV, Kunz M, Vieta E, Kapczinski F. Mediators of allostasis and systemic toxicity in bipolar disorder. Physiology & behavior. 2012;106:46-50. https://doi.org/10.1016/j.physbeh.2011.10.029 DOI: https://doi.org/10.1016/j.physbeh.2011.10.029

Anders S, Tanaka M, Kinney DK. Depression as an evolutionary strategy for defense against infection. Brain, behavior, and immunity. 2013;31:9-22. https://doi.org/10.1016/j.bbi.2012.12.002 DOI: https://doi.org/10.1016/j.bbi.2012.12.002

Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Progress in neuropsychopharmacology & biological psychiatry. 2011;35:744-59. https://doi.org/10.1016/j.pnpbp.2010.08.026 DOI: https://doi.org/10.1016/j.pnpbp.2010.08.026

Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. neuroimmunomodulation. 2009;16:300-17. https://doi.org/10.1159/000216188 DOI: https://doi.org/10.1159/000216188

Udina M, Castellvi P, Moreno-Espana J, Navines R, Valdes M, Forns X, et al. Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. The Journal of clinical psychiatry. 2012;73:1128-38. https://doi.org/10.4088/JCP.12r07694 DOI: https://doi.org/10.4088/JCP.12r07694

Post RM, Altshuler L, Leverich G, Nolen W, Kupka R, Grunze H, et al. More stressors prior to and during the course of bipolar illness in patients from the United States compared with the Netherlands and Germany. Psychiatry research. 2013;210:880-6. https://doi.org/10.1016/j.psychres.2013.08.007 DOI: https://doi.org/10.1016/j.psychres.2013.08.007

Soczynska JK, Kennedy SH, Woldeyohannes HO, Liauw SS, Alsuwaidan M, Yim CY, et al. Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. Neuromolecular medicine. 2011;13:93-116. https://doi.org/10.1007/s12017-010-8140-8 DOI: https://doi.org/10.1007/s12017-010-8140-8

Torrey EF, Davis JM. Adjunct treatments for schizophrenia and bipolar disorder: what to try when you are out of ideas. Clinical schizophrenia & related psychoses. 2012;5:208-16. https://doi.org/10.3371/CSRP.5.4.5 DOI: https://doi.org/10.3371/CSRP.5.4.5

Sylvia LG, Peters AT, Deckersbach T, Nierenberg AA. Nutrient-based therapies for bipolar disorder: a systematic review. Psychother Psychosom. 2013;82:10-9. https://doi.org/10.1159/000341309 DOI: https://doi.org/10.1159/000341309

Bu DX, Griffin G, Lichtman AH. Mechanisms for the anti-inflammatory effects of statins. Current opinion in lipidology. 2011;22:165-70. https://doi.org/10.1097/MOL.0b013e3283453e41 DOI: https://doi.org/10.1097/MOL.0b013e3283453e41

O'Neil A, Sanna L, Redlich C, Sanderson K, Jacka F, Williams LJ, et al. The impact of statins on psychological wellbeing: a systematic review and meta-analysis. BMC medicine. 2012;10:154. https://doi.org/10.1186/1741-7015-10-154 DOI: https://doi.org/10.1186/1741-7015-10-154

Macedo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, et al. Effects of alpha-lipoic acid in an animal model of mania induced by D-amphetamine. Bipolar Disord. 2012;14:707-18. https://doi.org/10.1111/j.1399-5618.2012.01046.x DOI: https://doi.org/10.1111/j.1399-5618.2012.01046.x

Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Archives of general psychiatry. 2010;67:360-8. https://doi.org/10.1001/archgenpsychiatry.2010.22 DOI: https://doi.org/10.1001/archgenpsychiatry.2010.22

Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for newdrug development. The Australian and New Zealand journal of psychiatry. 2013;47:26-42. https://doi.org/10.1177/0004867412449303 DOI: https://doi.org/10.1177/0004867412449303

Lucae S, Salyakina D, Barden N, Harvey M, Gagne B, Labbe M, et al. P2RX7, a gene coding for a purinergic ligandgated ion channel, is associated with major depressive disorder. Human molecular genetics. 2006;15:2438-45. https://doi.org/10.1093/hmg/ddl166 DOI: https://doi.org/10.1093/hmg/ddl166

Backlund L, Nikamo P, Hukic DS, Ek IR, Traskman-Bendz L, Landen M, et al. Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord. 2011;13:500-8. https://doi.org/10.1111/j.1399-5618.2011.00952.x DOI: https://doi.org/10.1111/j.1399-5618.2011.00952.x

Hirota T, Kishi T. Adenosine hypothesis in schizophrenia and bipolar disorder: a systematic review and meta-analysis of randomized controlled trial of adjuvant purinergic modulators. Schizophrenia research. 2013;149:88-95. https://doi.org/10.1016/j.schres.2013.06.038 DOI: https://doi.org/10.1016/j.schres.2013.06.038

Zarate CA, Jr., Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, et al. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biological psychiatry. 2012;71:939-46. https://doi.org/10.1016/j.biopsych.2011.12.010 DOI: https://doi.org/10.1016/j.biopsych.2011.12.010

Machado-Vieira R, Zarate CA, Jr. Proof of concept trials in bipolar disorder and major depressive disorder: a translational perspective in the search for improved treatments. Depression and anxiety. 2011;28:267-81. https://doi.org/10.1002/da.20800 DOI: https://doi.org/10.1002/da.20800

Fass DM, Schroeder FA, Perlis RH, Haggarty SJ. Epigenetic mechanisms in mood disorders: Targeting neuroplasticity. Neuroscience. 2013. https://doi.org/10.1016/j.neuroscience.2013.01.041 DOI: https://doi.org/10.1016/j.neuroscience.2013.01.041

McIntyre RS, Cha DS, Jerrell JM, Swardfager W, Kim RD, Costa LG, et al. Advancing biomarker research: utilizing 'Big Data' approaches for the characterization and prevention of bipolar disorder. Bipolar Disord. 2013. https://doi.org/10.1111/bdi.12162 DOI: https://doi.org/10.1111/bdi.12162

Downloads

Publicado

2014-04-30

Como Citar

1.
Carvalho AF. Novos alvos terapêuticos para o transtorno afetivo bipolar. Debates em Psiquiatria [Internet]. 30º de abril de 2014 [citado 18º de abril de 2024];4(2):26-33. Disponível em: https://revistardp.org.br/revista/article/view/247

Edição

Seção

Artigos de Revisão

Plaudit

Artigos mais lidos do(s) mesmo(s) autor(es)