Efecto conductual en modelos experimentales de depresión mediante microinyección de péptidos liberadores de gastrina a través del núcleo accumbens
DOI:
https://doi.org/10.25118/2763-9037.2021.v11.221Palabras clave:
Trastorno depresivo mayor, Depresión, GRPResumen
Introducción: El Trastorno Depresivo Mayor es una condición médica común en la población, que puede afectar no solo la capacidad mental, sino también la física, llegando incluso a causar incapacidad para el trabajo. Su causa aún se desconoce, aunque van ganando terreno algunas teorías, como las hipótesis de la neurogénesis y la hipótesis de la neuroplasticidad, que surgieron en un contexto donde la hipótesis clásica de las monoaminas ya no explica todos los casos. En este contexto, se destacó una fuerte asociación entre la hiperactividad del eje hipotalámico-pituitario-adrenal y las hormonas del tracto gastroin-testinal en estudios que plantean la hipótesis de que la depresión tiene factores metabólicos asociados, llegando incluso a caracterizar la enfermedad metabólica según a algunos autores. Objetivo: De esta manera, el presente estudio busca analizar el efecto conductual de la hormona GRP del tracto gastrointestinal a la vista de la evidencia actual sobre su posible relación con la fisiopatología de la depresión. Métodos: Se seleccionaron veinte ratones suizos para realizar el procedimiento de derrota social, análisis con prueba de nado forzado e intervención con Fluoxetina en el control y GRP en el experimental. Resultados: El estrés por derrota social aumentó el tiempo de inmovilidad en la prueba de nado forzado en 13 segundos en los ratones sumisos, la inyección de GRP redujo el tiempo de inmovilidad con una diferencia de 78 segundos para el grupo de control tratado con fluoxetina. Conclusión: Así, el GRP, en comparación con otras hormonas estudiadas en la depresión, tuvo un efecto positivo sobre la depresión y una posible terapia para su tratamiento.
Descargas
Métricas
Citas
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol. 2017;20(12):1036-46. https://doi.org/10.1093/ijnp/pyx056 - PMid:29106542 - PMCid:PMC5716179
Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mo-od disorders: Implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1-2):93-118. https://doi.org/10.1007/s00429-008-0189-x - PMid:18704495 PMCid:PMC2522333
Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry [Internet]. 2016;81(8):645-53. https://doi.org/10.1016/j.biopsych.2016.09.007 - PMid:27871668 PMCid:PMC5352537
Hendrickx H, McEwen BS, Ouderaa F Van Der. Metabolism, mood and cognition in aging: The importance of lifestyle and dietary intervention. Neurobiology of Aging. 2005; 26(1):1-5, Supplement, https://doi.org/10.1016/j.neurobiolaging.2005.10.005
Flor LS, Campos MR. Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: evidências de um inquérito de base populacional. Rev Bras Epidemiol [Internet]. 2017;20(1):16-29. https://doi.org/10.1590/1980-5497201700010002 - PMid:28513791
Wexler DJ, Porneala B, Chang Y, Huang ES, Huffman JC, Grant RW. Diabetes differentially affects depression and selfrated health byage in the U.S. Diabetes Care. 2012;35(7):1575-7. https://doi.org/10.2337/dc11-2266 - PMid:22611066 PMCid:PMC3379579
Villanueva R. Neurobiology of Major Depressive Disorder. Psychosom Med. 2013;2013(2013):1-7. https://doi.org/10.1155/2013/873278 - PMid:24222865 PMCid:PMC3810062
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress. 2009;12(1):1-21. https://doi.org/10.1080/10253890802046281 PMid:19116888 - PMCid:PMC2613299
Rohleder N, Schommer NC, Hellhammer DH, Engel R, Kirschbaum C. Sex differences in glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress. Psychosom Med. 2001;63(6):966-72. https://doi.org/10.1097/00006842-200111000-00016 - PMid:11719636
Lutter M, Nestler EJ. Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. J Nutr [Internet]. 2009 Mar 1;139(3):629-32. https://doi.org/10.3945/jn.108.097618 - PMid:19176746 PMCid:PMC2714382
O'Kushky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol. 2012;33(3):230-51. https://doi.org/10.1016/j.yfrne.2012.06.002 - PMid:22710100 PMCid:PMC3677055
Malberg JE, Platt B, Rizzo SJS, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S. Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology. 2007; 32(11):2360-8. https://doi.org/10.1038/sj.npp.1301358 - PMid:17342171
Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037(1-2):204-8. https://doi.org/10.1016/j.brainres.2005.01.007 - PMid:15777771
Becker C, Zeau B, Rivat C, Blugeot A, Hamon M, Benoliel JJ. Repeated social defeat-induced depression-like behavioral and biological alterations in rats: Involvement of cholecystokinin. Mol Psychiatry. 2008;13(12):1079-92. https://doi.org/10.1038/sj.mp.4002097 -PMid:17893702
Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, et al. Prefrontal Cortical Circuit for Depression and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. J Neurosci [Internet]. 2014;34(11):3878-87. https://doi.org/10.1523/JNEUROSCI.1787-13.2014 - PMid:24623766 PMCid:PMC3951691
Del Boca C, Lutz PE, Le Merrer J, Koebel P, Kieffer BL. Cholecystokinin knockdown in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience [Internet]. 2012 Aug 12;218(9):185-95. https://doi.org/10.1016/j.neuroscience.2012.05.022 - PMid:22613736 - PMCid:PMC3532740
Schwartsmann G, Henriques J, Roesler R. Gastrin-Releasing Peptide Receptor as a Molecular Target for Psychiatric and Neurological Disorders. CNS & Neurol Disord - Drug Targets [Internet]. 2006;5(2):197-204. https://doi.org/10.2174/187152706776359673 -PMid:16611092
Yao L, Chen J, Chen H, Xiang D, Yang C, Xiao L, Liu W, Wang H, Wang G, Zhu F, Liu Z. Hypothalamic gastrin-releasing peptide receptor mediates an antidepressant-like effect in a mouse model of stress. Am J Transl Res [Internet]. 2016;8(7):3097-105. PMID: 27508030 - PMCID: PMC4969446.
Monje FJ, Kim E-J, Cabatic M, Lubec G, Herkner KR, Pollak DD. A role for glucocor-ticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice. Annals of Med [Internet]. 2011;43(5):389-402. https://doi.org/10.3109/07853890.2010.538716 - PMid:21254899
Roesler R, Kent P, Luft T, Schwartsmann G, Merali Z. Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem [Internet]. 2014;112:44-52. https://doi.org/10.1016/j.nlm.2013.08.013 - PMid:24001571
Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res. 1988;460(2):314-22. https://doi.org/10.1016/0006-8993(88)90375-7
Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Bédard T, Anisman H. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry. 2006;59(7):594-602. https://doi.org/10.1016/j.biopsych.2005.08.008 - PMid:16197926
Merali Z, Anisman H, James JS, Kent P, Schulkin J. Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex). Eur J Neurosci. 2008;28(1):165-72. https://doi.org/10.1111/j.1460-9568.2008.06281.x - PMid:18662341
Iniguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto, SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hip-pocampus of adolescent male C57BL/6 mice. Neurobiol Stress. 2016;5:54-64. https://doi.org/10.1016/j.ynstr.2016.07.001 - PMid:27981196 PMCid:PMC5154707
Riggs LM, Nieto SJ, Dayrit G, Zamora NN, Shawhan KL, Cruz B, Warren BL. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. HHS Public Access. 2014;17(3):247-55. https://doi.org/10.3109/10253890.2014.910650 - PMid:24689732 - PMCid:PMC5534169
Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gulyaeva N. Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers. Biomed Res Int. 2014;2014. https://doi.org/10.1155/2014/932757 - PMid:24999483 PMCid:PMC4066721
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hip-pocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519-25. https://doi.org/10.1038/nn1659 - PMid:16501568
Nikolaos Kokras, Dimitrios Baltas, Foivos Theocharis, Christina Dalla. Kinoscope: An Open-Source Computer Program for Behavioral Pharmacologists. Front Behav Neu-rosci | www.frontiersin.org [Internet]. 2017 [citado 25 de agosto de 2019];11(88):1-7. https://doi.org/10.3389/fnbeh.2017.00088 - PMid:28553211 PMCid:PMC5427106
Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology [Internet]. 2009 May 17;34(6):1609-24. https://doi.org/10.1038/npp.2008.220 - PMid:19092782 - PMCid:PMC2692426
Qi J, Zhang S, Wang H, Barker DJ, Miranda-Barrientos J, Morales M. VTA glutama-tergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneu-rons. Nat Neurosci [Internet]. 2016 May 28;19(5):725-33. https://doi.org/10.1038/nn.4281 - PMid:27019014 - PMCid:PMC4846550
El-Din AG, Aly MA, Ramadan MA, Mostafa M, Hamed SM. Behavioral Monitoring Tool. Egypt; 2011. Available at: http://ratmonitoring.sourceforge.net/#
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry. 2020;10(January):1-9. https://doi.org/10.3389/fpsyt.2019.01020 - PMid:32047449 PMCid:PMC6997338
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hokfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A. 2016;113(32):E4726-35. https://doi.org/10.1073/pnas.1609198113 - PMid:27457954 PMCid:PMC4987783
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic plas-ticity in the dorsal raphe nucleus characterizes susceptibility and resilience to anhedo-nia. J Neurosci. 2020;40(3):569-84. https://doi.org/10.1523/JNEUROSCI.1802-19.2019 - PMid:31792153 - PMCid:PMC6961996
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M. Synaptic properties of SOM-and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci. 2014;34(24):8197-209. https://doi.org/10.1523/JNEUROSCI.5433-13.2014 - PMid:24920624 - PMCid:PMC6608234
Hassan AM, Mancano G, Kashofer K, Fröhlich EE, Matak A, Mayerhofer R, Reichmann F, Olivares M, Neyrinck AM, Delzenne NM, Claus SP, Holzer P. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr Neurosci. 2019;22(12):877-93. https://doi.org/10.1080/1028415X.2018.1465713 - PMid:29697017
Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, Fallon B, Mazei-Robison M, Ku SM, Harrigan E, Winstanley CA, Joshi T, Feng J, Berton O, Nestler EJ. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecysto-kinin: Role of ΔFosB. J Neurosci. 2014;34(11):3878-87. https://doi.org/10.1523/JNEUROSCI.1787-13.2014 - PMid:24623766 PMCid:PMC3951691
Choi J, Kim JE, Kim TK, Park JY, Lee JE, Kim H, Lee EH, Han PL. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology [Internet]. 2015;97:346-56. https://doi.org/10.1016/j.neuropharm.2015.03.030 - PMid:26107116
Witzmann FA, Li J, Strother WN, McBride WJ, Hunter L, Crabb DW, Lumeng L, Li TK. Innate differences in protein expression in the nucleus accumbens and hippocampus of inbred alcohol-preferring and -nonpreferring rats. In: Proteomics [Internet]. Proteomics; 2003 [citado 4 de outubro de 2020]. p. 1335-44. https://doi.org/10.1002/pmic.200300453 - PMid:12872235 PMCid:PMC2652869
Kramer DJ, Risso D, Kosillo P, Ngai J, Bateup HS. Combinatorial expression of Grp and Neurod6 defines dopamine neuron populations with distinct projection patterns and disease vulnerability. eNeuro [Internet]. 1 de maio de 2018 [citado 4 de outubro de 2020];5(3). https://doi.org/10.1523/ENEURO.0152-18.2018 - PMid:30135866 PMCid:PMC6104179
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry. 2020;10(January):1-9. https://doi.org/10.3389/fpsyt.2019.01020 - PMid:32047449 PMCid:PMC6997338
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Rodrigo de Almeida, Jorge Henna Neto, Eduardo Ernani Piazza da Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Debates em Psiquiatria permite que el (los) autor (es) mantenga(n) sus derechos de autor sin restricciones. Permite al (los) autor (es) conservar sus derechos de publicación sin restricciones. Los autores deben garantizar que el artículo es un trabajo original sin fabricación, fraude o plagio; no infringe ningún derecho de autor o derecho de propiedad de terceros. Los autores también deben garantizar que cada uno atendió a los requisitos de autoría conforme a la recomendación del ICMJE y entienden que, si el artículo o parte de él es fallido o fraudulento, cada autor comparte la responsabilidad.
Reconocimiento-NoComercial 4.0 internacional (CC BY-NC 4.0) - Debates em Psiquiatria es regida por la licencia CC-BY-NC
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia. Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios<. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.