Modelo animal de mania induzido por anfetamina como método de identificação de novos alvos terapêuticos para o transtorno bipolar
DOI:
https://doi.org/10.25118/2763-9037.2014.v4.259Palavras-chave:
Transtorno bipolar, fisiopatologia, TerapêuticaResumo
O Transtorno Bipolar é um transtorno do humor grave com grande morbidade e mortalidade. É caracterizado por recorrentes episódios de mania e depressão. Pouco se sabe sobre a precisa neurobiologia do TB, que é essencial para o desenvolvimento de terapias específicas que funcionem rapidamente e sejam mais eficazes e toleráveis que as terapias existentes. Dadas as limitações das tecnologias não invasivas atuais para estudar o cérebro humano, os modelos animais de transtornos psiquiátricos são uma das ferramentas mais importantes para os estudos neurobiológicos. Nessa revisão são abordados alguns novos alvos terapêuticos para o tratamento do transtorno bipolar, descobertos através de estudo com modelos animais. Estudos com o modelo animal de mania induzido por anfetamina apresentam excelentes resultados apontando o envolvimento do estresse oxidativo, da Proteína Quinase C e das Histonas Deacetilases na fisiopatologia do transtorno bipolar, assim como seu potencial enquanto alvos terapêuticos, porém, esses alvos devem ser continuamente explorados nos transtornos de humor.
Downloads
Métricas
Referências
Keck PE, McElroy SL, Arnold LM. Bipolar disorder. Med Clin North Am. 2001; 85:645–661. DOI: https://doi.org/10.1016/S0025-7125(05)70334-5
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5ª ed. Washington: American Psychiatric Publishing; 2013. DOI: https://doi.org/10.1176/appi.books.9780890425596
Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997; 349:1436-42. DOI: https://doi.org/10.1016/S0140-6736(96)07495-8
Subramaniam M, Abdin E, Vaingankar JA, Nan L, Heng D, McCrone P, Chong SA. Impact of psychiatric disorders and chronic physical conditions on health-related quality of life: Singapore Mental Health Study. J Affect Disord. 2013 May;147:325-30. DOI: https://doi.org/10.1016/j.jad.2012.11.033
Müller-Oerlinghausen B, Berghöfer A, Bauer M. Bipolar disorder. Lancet. 2002;359:241-7. DOI: https://doi.org/10.1016/S0140-6736(02)07450-0
Kapczinski F, Hallak JE, Nardi AE, Roesler R, Quevedo J, Schröder N, Crippa JA.Brazil launches an innovative program to develop the National Institutes for Science and Technology (INCTs): the INCT for Translational Medicine. Rev Bras Psiquiatr. 2009 Sep;31:197-9. No abstract available. DOI: https://doi.org/10.1590/S1516-44462009000300002
Geddes JR, Miklowitz DJ. Treatment of bipolar disorder. Lancet. 2013; 381:1672-1682 DOI: https://doi.org/10.1016/S0140-6736(13)60857-0
Keck PE Jr, Kessler RC, Ross R.Clinical and economic effects of unrecognized or inadequately treated bipolar disorder. J Psychiatr Pract. 2008;2:31-8 DOI: https://doi.org/10.1097/01.pra.0000320124.91799.2a
Dean OM, Bush AI, Berk M. (2012) Translating the rosetta stone of Nacetylcysteine. Biol. Psychiatry 71: 935–936 DOI: https://doi.org/10.1016/j.biopsych.2012.04.001
Nestler EJ, Hyman SE. Animal models of neuropsychiatricdisorders. Nat Neurosci. 2010 ;13:1161-9 DOI: https://doi.org/10.1038/nn.2647
McGonigle P, Ruggeri B. Animal models of human disease: Challenges in enabling translation. Biochem Pharmacol. 2013 ; pii: S0006-295200492-9.
Young AH, Macpherson H. Detection of bipolar disorder. Br J Psychiatry. 2011 Jul;199:3-4. DOI: https://doi.org/10.1192/bjp.bp.110.089128
Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006 ;31:326-32.
Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979; 59:527–605. DOI: https://doi.org/10.1152/physrev.1979.59.3.527
Reddy R, Sahebarao MP, Mukhergee S, Murthy JN. Enzymes the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry. 1991; 30:109–412 DOI: https://doi.org/10.1016/0006-3223(91)90298-Z
Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant’Anna M, Cunha AB, Post RM. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr. 2008; 30:243–245. DOI: https://doi.org/10.1590/S1516-44462008000300011
Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res. 2010;35:1295-301. DOI: https://doi.org/10.1007/s11064-010-0195-2
Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med. 1999; 222:236–245. DOI: https://doi.org/10.1046/j.1525-1373.1999.d01-140.x
Magalhães PV, Jansen K, Pinheiro RT, Colpo GD, da Motta LL, Klamt F, da Silva RA, Kapczinski F. Peripheral oxidative damage in early-stage mood disorders: a nested populationbased case-control study. Int J Neuropsychopharmacol. 2012; 15:1043-1050. DOI: https://doi.org/10.1017/S1461145711001532
Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PV, Kauer-Sant’Anna M, Klamt F, Moreira JC, de Bittencourt Pasquali MA, Fries GR, Quevedo J, Gama CS, Post R. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res. 2011; 45:156-161. DOI: https://doi.org/10.1016/j.jpsychires.2010.05.015
Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, Kapczinski F. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32:1677-81. DOI: https://doi.org/10.1016/j.pnpbp.2008.07.001
Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant,in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011; 14:123-130. DOI: https://doi.org/10.1017/S1461145710000805
da-Rosa DD, Valvassori SS, Steckert AV, Arent CO, Ferreira CL, Lopes-Borges J, Varela RB, Mariot E, Dal-Pizzol F, Andersen ML, Quevedo J.Differences between dextroamphetamine and methamphetamine: behavioral changes and oxidative damage in brain of Wistar rats. J Neural Transm. 2012 ;119:31-8. DOI: https://doi.org/10.1007/s00702-011-0691-9
Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res. 2006b;30(1):224-229. DOI: https://doi.org/10.1016/j.brainres.2006.04.076
Andreazza AC, Kauer-Sant’Anna M, Frey BN, Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci. 2008 Nov;33(6):516-24.
Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res. 2006c; 31(5):699-703.
Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006d;31(5):326-332. DOI: https://doi.org/10.1007/s11064-006-9070-6
Valvassori SS, Petronilho FC, Réus GZ, Steckert AV, Oliveira VB, Boeck CR, Kapczinski F, Dal-Pizzol F, Quevedo J. Effect of N-acetylcysteine and/or deferoxamine on oxidative stress and hyperactivity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry. 2008 May 15;32:1064-8. DOI: https://doi.org/10.1016/j.pnpbp.2008.02.012
Ohno S, Nishizuka Y. Protein Kinase C isotypes and their specifc functions: Prologue. J Biochem. 2002; 132:509-511 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a003249
Sanchez-Bautista S, Nicolas FE. Recent patents concerning modulators of protein kinase C. Recent Patents on DNA & Gene Sequences. 2013; 7, 74-81. DOI: https://doi.org/10.2174/1872215611307010011
Wu-Zhang AX, Newton AC. Protein Kinase C pharmacology: Refining the toolbox. Biochem. J. 2013; 452:195:219. DOI: https://doi.org/10.1042/BJ20130220
Melikian HE. Neurotransmitter transport trafficking: endocytosis, recycling and regulation. Pharmacology & Therapeutics. 2004; 104:17-27. DOI: https://doi.org/10.1016/j.pharmthera.2004.07.006
Nissen-Meyer LSH, Chaudhry FA. Protein kinaseC phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Frontiers in endocrinology. 2013; 4:138. DOI: https://doi.org/10.3389/fendo.2013.00138
Robinson MB. Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem. 2002; 80:1-11. DOI: https://doi.org/10.1046/j.0022-3042.2001.00698.x
Zarate CA Jr, Singh JB, Carlson PJ, Quiroz J, Jolkovsky L, Luckenbaugh DA, Manji HK. Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study. Bipolar Disord. 2007;9:561-70. DOI: https://doi.org/10.1111/j.1399-5618.2007.00530.x
Yildiz A, Guleryuz S, Ankerst DP, et al. Protein kinase C inhibition in the treatment of mania: a double-blind, placebocontrolled trial of tamoxifen. Arch Gen Psychiatry 2008; 65:255- 63. DOI: https://doi.org/10.1001/archgenpsychiatry.2007.43
Yildiz A, Vieta E, Tohen M, Baldessarini RJ. Factors modifying drug and placebo responses in randomized trials for bipolar mania. Int J Neuropsychopharmacol. 2011;14:863-75. DOI: https://doi.org/10.1017/S1461145710001641
Zarate CA, Manji HK. Protein Kinase C Inhibitors: Rationale for Use and Potential in the Treatment of Bipolar Disorder. CNS Drugs. 2009; 23:569-582. DOI: https://doi.org/10.2165/00023210-200923070-00003
Cechinel-Recco K, Valvassori SS, Varela RB, Resende WR, Arent CO, Vitto MF, Luz G, de Souza CT, Quevedo J. Lithium and tamoxifen modulate cellular plasticity cascades in animal model of mania. J Psychopharmacol. 2012;26:1594-604. DOI: https://doi.org/10.1177/0269881112463124
Brambilla P, Glahm DC, Balestrieri M, Soares JC. Magnetic Resonance Findings in Bipolar Disorder. Psychiatr. Clin. N. Am. 2005; 28:443-467. DOI: https://doi.org/10.1016/j.psc.2005.01.006
Lipskaya TY. The physiological role of the creatine kinase system: evolution of views. Biochemistry (Mosc). 2001; 66:115-129. DOI: https://doi.org/10.1023/A:1002858311553
Moretti M, Valvassori SS, Steckert AV, Rochi N, Benedet J, Scaini G, Kapczinski F, Streck EL, Zugno AI, Quevedo J. Tamoxifen effects on respiratory chain complexes and creatine kinase activities in an animal model of mania. Pharmacol Biochem Behav. 2011 ;98:304-10. DOI: https://doi.org/10.1016/j.pbb.2011.01.017
Steckert AV, Valvassori SS, Mina F, Lopes-Borges J, Varela RB, Kapczinski F, Dal-Pizzol F, Quevedo J. Protein kinase C and oxidative stress in an animal model of mania. Curr Neurovasc Res. 2012 ;9:47-57. DOI: https://doi.org/10.2174/156720212799297056
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009; 325:834-40. DOI: https://doi.org/10.1126/science.1175371
Tsankova N, Renthal W, Kumar A, Nestler EJ.Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007; 8:355-67. DOI: https://doi.org/10.1038/nrn2132
Machado-Vieira R, Ibrahim L, Zarate CA Jr. Histone Deacetylases and Mood Disorders: Epigenetic Programming in Gene-Environment Interactions. CNS Neurosci Ther. 2011; 17:699-04. DOI: https://doi.org/10.1111/j.1755-5949.2010.00203.x
New M, Olzscha H, La Thangue NB. HDAC inhibitorbased therapies: can we interpret the code? Mol Oncol. 2012; 6:637-56. DOI: https://doi.org/10.1016/j.molonc.2012.09.003
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev. 2013; 65:105-42. DOI: https://doi.org/10.1124/pr.111.005512
Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Coco FL, Nervi C, Pelicci PG, Heinzel1 T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001; 20:6969-78. DOI: https://doi.org/10.1093/emboj/20.24.6969
Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004; 64:1079-86. DOI: https://doi.org/10.1158/0008-5472.CAN-03-0799
Genton P, Semah F, Trinka E. Valproic acid in epilepsy : pregnancy-related issues. Drug Saf. 2006; 29:1-21. DOI: https://doi.org/10.2165/00002018-200629010-00001
Dos Santos MP, de Farias CB, Roesler R, Brunetto AL, Abujamra AL. In vitro antitumor effect of sodium butyrate and zoledronic acid combined with traditional chemotherapeutic drugs: a paradigm of synergistic molecular targeting in the treatment of Ewing sarcoma. Oncol Rep. 2013; In press. DOI: https://doi.org/10.3892/or.2013.2907
Tailor D, Hahm ER, Kale RK, Singh SV, Singh RP. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion. 2013; In Press DOI: https://doi.org/10.1016/j.mito.2013.10.004
Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14:994- 1008. DOI: https://doi.org/10.2174/1389200211314090006
Mu D, Gao Z, Guo H, Zhou G, Sun B. Sodium Butyrate Induces Growth Inhibition and Apoptosis in Human Prostate Cancer DU145 Cells by Up-Regulation of the Expression of Annexin A1. PLoS One. 2013; 8(9):e74922. DOI: https://doi.org/10.1371/journal.pone.0074922
Davie JR, Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003; 133:2485-2493. DOI: https://doi.org/10.1093/jn/133.7.2485S
Arent CO, Valvassori SS, Fries GR, Stertz L, Ferreira CL, Lopes-Borges J, Mariot E, Varela RB, Ornell F, Kapczinski F, Andersen ML, Quevedo J. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol Neurobiol. 2011;43:207-14. DOI: https://doi.org/10.1007/s12035-011-8178-0
Valvassori SS, Calixto KV, Budni J, Resende WR, Varela RB, de Freitas KV, Gonçalves CL, Streck EL, Quevedo J. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain. J Neural Transm. 2013 ;120:1737-42. DOI: https://doi.org/10.1007/s00702-013-1056-3
Moretti M, Valvassori SS, Varela RB, Ferreira CL, Rochi N, Benedet J, Scaini G, Kapczinski F, Streck EL, Zugno AI, Quevedo J.Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav Pharmacol. 2011 ;22:766-72. DOI: https://doi.org/10.1097/FBP.0b013e32834d0f1b
Steckert AV, Valvassori SS, Varela RB, Mina F, Resende WR, Bavaresco DV, Ornell F, Dal-Pizzol F, Quevedo J. Effects of sodium butyrate on oxidative stress and behavioral changes induced by administration of D-AMPH. Neurochem Int. 2013;62:425-32 DOI: https://doi.org/10.1016/j.neuint.2013.02.001
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2014 Roger Bitencourt Varela, Wilson Rodrigues Resende , João Quevedo
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Debates em Psiquiatria permite que o (s) autor (es) mantenha(m) seus direitos autorais sem restrições. Atribuição-NãoComercial 4.0 Internacional (CC BY-NC 4.0) - Debates em Psiquiatria é regida pela licença CC-BY-NC