Efeito comportamental em modelos experimentais de depressão por microinjeções do peptídeo liberador de gastrina via intra nucleus accumbens
DOI:
https://doi.org/10.25118/2763-9037.2021.v11.221Palavras-chave:
transtorno depressivo maior, depressão, GRPResumo
Introdução: O Transtorno Depressivo Maior é uma condição médica comum na população, que pode atingir não somente a capacidade mental, mas também a capacidade física, causando inclusive incapacidade laboral. A sua causa ainda permanece desconhecida, apesar de algumas teorias terem ganhado espaço, como as hipóteses da neurogênese e da neuroplasticidade, que surgiram num contexto onde a clássica hipótese das monoaminas já não explica todos os casos. Nesse contexto, uma forte associação entre a hiperatividade do eixo hipotálamo-pituitária-adrenal, bem como dos hormônios do trato gastrointestinal, foram destacados em estudos, levantando a hipótese de a depressão ter fatores metabólicos associados, levando inclusive a caracterização de doença metabólica segundo alguns autores. Objetivos: Desta forma, o presente estudo busca analisar o feito comportamental do hormônio do trato gastrointestinal GRP tendo em vista as evidências presentes sobre a possível relação deste com a fisiopatologia da depressão. Método: Foram selecionados 20 camundongos Swiss para realização do procedimento da derrota social, análise com teste do nado forçado e intervenção com Fluoxetina no controle e GRP no experimental. Resultados: O estresse de derrota social aumentou o tempo de imobilidade no teste do nado forçado em 13 segundos nos camundongos submissos, a injeção de GRP reduziu o tempo de imobilidade com uma diferença de 78 segundos para o grupo controle tratado com Fluoxetina. Conclusão: Assim, o GRP, comparado aos outros hormônios estudados na depressão apresentou efeito positivo no quadro depressivo e possível terapia para seu tratamento.
Downloads
Métricas
Referências
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol. 2017;20(12):1036-46. https://doi.org/10.1093/ijnp/pyx056 - PMid:29106542 - PMCid:PMC5716179
Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mo-od disorders: Implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1-2):93-118. https://doi.org/10.1007/s00429-008-0189-x - PMid:18704495 PMCid:PMC2522333
Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry [Internet]. 2016;81(8):645-53. https://doi.org/10.1016/j.biopsych.2016.09.007 - PMid:27871668 PMCid:PMC5352537
Hendrickx H, McEwen BS, Ouderaa F Van Der. Metabolism, mood and cognition in aging: The importance of lifestyle and dietary intervention. Neurobiology of Aging. 2005; 26(1):1-5, Supplement, https://doi.org/10.1016/j.neurobiolaging.2005.10.005
Flor LS, Campos MR. Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: evidências de um inquérito de base populacional. Rev Bras Epidemiol [Internet]. 2017;20(1):16-29. https://doi.org/10.1590/1980-5497201700010002 - PMid:28513791
Wexler DJ, Porneala B, Chang Y, Huang ES, Huffman JC, Grant RW. Diabetes differentially affects depression and selfrated health byage in the U.S. Diabetes Care. 2012;35(7):1575-7. https://doi.org/10.2337/dc11-2266 - PMid:22611066 PMCid:PMC3379579
Villanueva R. Neurobiology of Major Depressive Disorder. Psychosom Med. 2013;2013(2013):1-7. https://doi.org/10.1155/2013/873278 - PMid:24222865 PMCid:PMC3810062
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress. 2009;12(1):1-21. https://doi.org/10.1080/10253890802046281 PMid:19116888 - PMCid:PMC2613299
Rohleder N, Schommer NC, Hellhammer DH, Engel R, Kirschbaum C. Sex differences in glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress. Psychosom Med. 2001;63(6):966-72. https://doi.org/10.1097/00006842-200111000-00016 - PMid:11719636
Lutter M, Nestler EJ. Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. J Nutr [Internet]. 2009 Mar 1;139(3):629-32. https://doi.org/10.3945/jn.108.097618 - PMid:19176746 PMCid:PMC2714382
O'Kushky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol. 2012;33(3):230-51. https://doi.org/10.1016/j.yfrne.2012.06.002 - PMid:22710100 PMCid:PMC3677055
Malberg JE, Platt B, Rizzo SJS, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S. Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology. 2007; 32(11):2360-8. https://doi.org/10.1038/sj.npp.1301358 - PMid:17342171
Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037(1-2):204-8. https://doi.org/10.1016/j.brainres.2005.01.007 - PMid:15777771
Becker C, Zeau B, Rivat C, Blugeot A, Hamon M, Benoliel JJ. Repeated social defeat-induced depression-like behavioral and biological alterations in rats: Involvement of cholecystokinin. Mol Psychiatry. 2008;13(12):1079-92. https://doi.org/10.1038/sj.mp.4002097 -PMid:17893702
Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, et al. Prefrontal Cortical Circuit for Depression and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. J Neurosci [Internet]. 2014;34(11):3878-87. https://doi.org/10.1523/JNEUROSCI.1787-13.2014 - PMid:24623766 PMCid:PMC3951691
Del Boca C, Lutz PE, Le Merrer J, Koebel P, Kieffer BL. Cholecystokinin knockdown in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience [Internet]. 2012 Aug 12;218(9):185-95. https://doi.org/10.1016/j.neuroscience.2012.05.022 - PMid:22613736 - PMCid:PMC3532740
Schwartsmann G, Henriques J, Roesler R. Gastrin-Releasing Peptide Receptor as a Molecular Target for Psychiatric and Neurological Disorders. CNS & Neurol Disord - Drug Targets [Internet]. 2006;5(2):197-204. https://doi.org/10.2174/187152706776359673 -PMid:16611092
Yao L, Chen J, Chen H, Xiang D, Yang C, Xiao L, Liu W, Wang H, Wang G, Zhu F, Liu Z. Hypothalamic gastrin-releasing peptide receptor mediates an antidepressant-like effect in a mouse model of stress. Am J Transl Res [Internet]. 2016;8(7):3097-105. PMID: 27508030 - PMCID: PMC4969446.
Monje FJ, Kim E-J, Cabatic M, Lubec G, Herkner KR, Pollak DD. A role for glucocor-ticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice. Annals of Med [Internet]. 2011;43(5):389-402. https://doi.org/10.3109/07853890.2010.538716 - PMid:21254899
Roesler R, Kent P, Luft T, Schwartsmann G, Merali Z. Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem [Internet]. 2014;112:44-52. https://doi.org/10.1016/j.nlm.2013.08.013 - PMid:24001571
Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res. 1988;460(2):314-22. https://doi.org/10.1016/0006-8993(88)90375-7
Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Bédard T, Anisman H. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry. 2006;59(7):594-602. https://doi.org/10.1016/j.biopsych.2005.08.008 - PMid:16197926
Merali Z, Anisman H, James JS, Kent P, Schulkin J. Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex). Eur J Neurosci. 2008;28(1):165-72. https://doi.org/10.1111/j.1460-9568.2008.06281.x - PMid:18662341
Iniguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto, SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hip-pocampus of adolescent male C57BL/6 mice. Neurobiol Stress. 2016;5:54-64. https://doi.org/10.1016/j.ynstr.2016.07.001 - PMid:27981196 PMCid:PMC5154707
Riggs LM, Nieto SJ, Dayrit G, Zamora NN, Shawhan KL, Cruz B, Warren BL. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. HHS Public Access. 2014;17(3):247-55. https://doi.org/10.3109/10253890.2014.910650 - PMid:24689732 - PMCid:PMC5534169
Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gulyaeva N. Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers. Biomed Res Int. 2014;2014. https://doi.org/10.1155/2014/932757 - PMid:24999483 PMCid:PMC4066721
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hip-pocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519-25. https://doi.org/10.1038/nn1659 - PMid:16501568
Nikolaos Kokras, Dimitrios Baltas, Foivos Theocharis, Christina Dalla. Kinoscope: An Open-Source Computer Program for Behavioral Pharmacologists. Front Behav Neu-rosci | www.frontiersin.org [Internet]. 2017 [citado 25 de agosto de 2019];11(88):1-7. https://doi.org/10.3389/fnbeh.2017.00088 - PMid:28553211 PMCid:PMC5427106
Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology [Internet]. 2009 May 17;34(6):1609-24. https://doi.org/10.1038/npp.2008.220 - PMid:19092782 - PMCid:PMC2692426
Qi J, Zhang S, Wang H, Barker DJ, Miranda-Barrientos J, Morales M. VTA glutama-tergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneu-rons. Nat Neurosci [Internet]. 2016 May 28;19(5):725-33. https://doi.org/10.1038/nn.4281 - PMid:27019014 - PMCid:PMC4846550
El-Din AG, Aly MA, Ramadan MA, Mostafa M, Hamed SM. Behavioral Monitoring Tool. Egypt; 2011. Available at: http://ratmonitoring.sourceforge.net/#
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry. 2020;10(January):1-9. https://doi.org/10.3389/fpsyt.2019.01020 - PMid:32047449 PMCid:PMC6997338
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hokfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A. 2016;113(32):E4726-35. https://doi.org/10.1073/pnas.1609198113 - PMid:27457954 PMCid:PMC4987783
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic plas-ticity in the dorsal raphe nucleus characterizes susceptibility and resilience to anhedo-nia. J Neurosci. 2020;40(3):569-84. https://doi.org/10.1523/JNEUROSCI.1802-19.2019 - PMid:31792153 - PMCid:PMC6961996
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M. Synaptic properties of SOM-and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci. 2014;34(24):8197-209. https://doi.org/10.1523/JNEUROSCI.5433-13.2014 - PMid:24920624 - PMCid:PMC6608234
Hassan AM, Mancano G, Kashofer K, Fröhlich EE, Matak A, Mayerhofer R, Reichmann F, Olivares M, Neyrinck AM, Delzenne NM, Claus SP, Holzer P. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr Neurosci. 2019;22(12):877-93. https://doi.org/10.1080/1028415X.2018.1465713 - PMid:29697017
Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, Fallon B, Mazei-Robison M, Ku SM, Harrigan E, Winstanley CA, Joshi T, Feng J, Berton O, Nestler EJ. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecysto-kinin: Role of ΔFosB. J Neurosci. 2014;34(11):3878-87. https://doi.org/10.1523/JNEUROSCI.1787-13.2014 - PMid:24623766 PMCid:PMC3951691
Choi J, Kim JE, Kim TK, Park JY, Lee JE, Kim H, Lee EH, Han PL. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology [Internet]. 2015;97:346-56. https://doi.org/10.1016/j.neuropharm.2015.03.030 - PMid:26107116
Witzmann FA, Li J, Strother WN, McBride WJ, Hunter L, Crabb DW, Lumeng L, Li TK. Innate differences in protein expression in the nucleus accumbens and hippocampus of inbred alcohol-preferring and -nonpreferring rats. In: Proteomics [Internet]. Proteomics; 2003 [citado 4 de outubro de 2020]. p. 1335-44. https://doi.org/10.1002/pmic.200300453 - PMid:12872235 PMCid:PMC2652869
Kramer DJ, Risso D, Kosillo P, Ngai J, Bateup HS. Combinatorial expression of Grp and Neurod6 defines dopamine neuron populations with distinct projection patterns and disease vulnerability. eNeuro [Internet]. 1 de maio de 2018 [citado 4 de outubro de 2020];5(3). https://doi.org/10.1523/ENEURO.0152-18.2018 - PMid:30135866 PMCid:PMC6104179
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry. 2020;10(January):1-9. https://doi.org/10.3389/fpsyt.2019.01020 - PMid:32047449 PMCid:PMC6997338
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Rodrigo de Almeida, Jorge Henna Neto, Eduardo Ernani Piazza da Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Debates em Psiquiatria permite que o (s) autor (es) mantenha(m) seus direitos autorais sem restrições. Atribuição-NãoComercial 4.0 Internacional (CC BY-NC 4.0) - Debates em Psiquiatria é regida pela licença CC-BY-NC